Home
Class 12
MATHS
bar(a) and bar(b) are non-collinear vect...

`bar(a)` and `bar(b)` are non-collinear vectors. If `bar(c)=(x-2)bar(a)+bar(b)` and `bar(d)=(2x+1)bar(a)-bar(b)` are collinear, then find the value of x.

Text Solution

Verified by Experts

Since `bar(c)` and `bar(d)` are collinear vectors, there exists scalar t such that
`bar(c)=tbar(d)`
`:.(x-2)bar(a)+bar(b)=t[(2x+1)bar(a)-bar(b)]`
`:.(x-2)bar(a)+bar(b)=t(2x+1)bar(a)-tbar(b)`
`:.x-2=t(2x=1)` and `1=-t`
`:.t=-1`
`:.x-2=-(2x+1)=-2x-`
`:.3x=1" ":.x=(1)/(3)`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

bar a and bar b are non- collinear vectors. If barc = (x-2)bar a+bar b and bar d = (2x+1)bar a- bar b are collinear , then find the value of x

If the vectors bar(a)=-2bar(i)+3bar(j)+ybar(k) and bar(b)=xbar(i)-6bar(j)+2bar(k) are collinear, then the value of x+y is

If the vectors bar(a)=-2bar(i)+3bar(j)+ybar(k) and bar(b)=xbar(i)-6bar(j)+2bar(k) are collinear,then the value of x+y is

The vectors bar(a) and bar(b) are non-collinear.If bar(a)+(x+1)bar(b) and (2x-3)bar(b)-bar(a) are collinear,then the value of x is

Let bar(a) and bar(b) be unit vector.If the vectors bar(c)=bar(a)+2bar(b) and bar(d)=5bar(a)-4bar(b) are perpendicular to the each other then angle between bar(a) and bar(b) is

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bar(a),bar(b) are non collinear vectors such that bar(p)=(x+4y)bar(a)+(2x+y+1)bar(b) that of bar(q)=(y-2x+2)bar(a)+(2x-3y-1)bar(b), find x & y such that 3vec p=2vec q

If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+5bar(c) are coplanar, then find value of lamda

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]