Home
Class 12
MATHS
If bar(a)=hat(i)+2hat(j),b=-2hat(i)+hat(...

If `bar(a)=hat(i)+2hat(j),b=-2hat(i)+hat(j),bar(c)=4hat(i)+3hat(j)` find x and y such `bar(c)=xbar(a)+ybar(b)`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the values of \( x \) and \( y \) such that: \[ \bar{c} = x \bar{a} + y \bar{b} \] Given: - \(\bar{a} = \hat{i} + 2\hat{j}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If bar(a)=hat(i)+hat(j)+hat(k),bar(b)=2hat(i)+qhat(j)+hat(k),hat(c)=hat(i)-hat(j)+4hat(k)andbar(a)*(bar(b)xxbar(c))=1 , then find the value of q.

If overline(a)=hat(i)+2hat(j), overline(b)=-2hat(i)+hat(j), overline(c)=4hat(i)+3hat(j) and overline(c)=xoverline(a)+yoverline(b) , then

If bar(a)=3hat(i)-2hat(j)+7hat(k),bar(b)=5hat(i)+hat(j)-2hat(k)andbar(c)=hat(i)+hat(j)-hat(k) , then find bar(a)*(bar(b)xxbar(c)) .

Find bar(a). bar(b) xx bar(c) , if bar(a) = 3 hat(i) - hat(j) + 4 hat(k), bar(b) = 2hat(i) + 3 hat(j) - hat(k), bar(c) = - 5 hat(i) + 2 hat(j) + 3 hat(k)

If bar(a)=3hat(i)-hat(j)+4hat(k)," "bar(b)=2hat(i)+3hat(j)-hat(k)," "bar(c)=-5hat(i)+2hat(j)+3hat(k) , then bar(a)*(bar(b)xxbar(c)) = . . . . . . . .

Express bar(p) as a linear combination of bar(a),bar(b)andbar(c) , where bar(p)=hat(i)+4hat(j)-4hat(k),bar(a)=2hat(i)-hat(j)+3hat(k),bar(b)=hat(i)-2hat(j)+4hat(k),bar(c)=-hat(i)+3hat(j)-5hat(k) .

Find lamda , if the vectors bar(a)=hat(i)+hat(j)+hat(k),bar(b)=hat(i)-hat(j)+hat(k)andbar(c)=2hat(i)+3hat(j)+lamdahat(k) are coplanar.

If bar(a) = 4 hat(i) + 3 hat(k) and bar(b) = - 2 hat(i) + hat(j) + 5 hat(k) then find 2 bar(a) + 5 bar(b)

Find [bar(a)bar(b)bar(c)] where : (1) bar(a)=2hat(i)+hat(j)-hat(k),bar(b)=3hat(i)-hat(j)-hat(k),hat(c)=hat(j)+3hat(k) (2) bar(a)=7hat(i)-hat(j)+2hat(k),bar(b)=hat(i)+3hat(j)-hat(k),bar(c)=4hat(i)+5hat(k) .

Let bar(u)=hat i+hat j, bar(v)=hat i-hat j,bar(w)=hat i+2hat j+3hat k , n unit vector such that bar(u).bar(n)=0,bar(v).bar(n)=0 then |bar(w).bar(n)| =