Home
Class 12
MATHS
If bar(a),bar(b),bar(c) are non - coplan...

If `bar(a),bar(b),bar(c)` are non - coplanar vectors, then show the vectors `-bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c)` and `2bar(a)-3bar(b)+bar(c)` are coplanar.

Text Solution

AI Generated Solution

To show that the vectors \(-\bar{a} + 3\bar{b} - 5\bar{c}\), \(-\bar{a} + \bar{b} + \bar{c}\), and \(2\bar{a} - 3\bar{b} + \bar{c}\) are coplanar, we can use the concept of the scalar triple product. If the scalar triple product of three vectors is zero, then the vectors are coplanar. ### Step 1: Define the vectors Let: \[ \bar{u} = -\bar{a} + 3\bar{b} - 5\bar{c} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show that the vectors 2bar(a)-5bar(b)+2bar(c),bar(a)+5bar(b)-6bar(c)and3bar(a)-4bar(c) are coplanar.

If bar(a),bar(b),bar(c) are non-coplanar vectors.Prove that the four points -bar(a)+4bar(b)-3bar(c) , 3bar(a)+2bar(b)-5bar(c) , -3bar(a)+8bar(b)-5bar(c) , -3bar(a)+2bar(b)+bar(c) are coplanar.

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

If the vectors bar(a)+bar(b)+bar(c),bar(a)+lambdabar(b)+2bar(c) and -bar(a)+bar(b)+bar(c) are linearly dependent then lambda is

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If bar(a),bar(b),bar(c) are non coplanar vectors and lambda is a real number then [lambda(bar(a)+bar(b))lambda^(2)bar(b)lambdabar(c)]=[bar(a)bar(b)+bar(c)bar(b)] for

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]