Home
Class 12
MATHS
If A, B, C and D are four non-collinear ...

If A, B, C and D are four non-collinear points in the plane such that `bar(AD)+bar(BD)+bar(CD)=bar(0)`, then prove that the points D is the centroid of the triangle ABC.

Text Solution

Verified by Experts

Let `bar(a),bar(b),bar(c),bar(d)` be the position vectors of A,B,C,D respectively.
`:.bar(AD)+bar(BD)=bar(CD)=bar(0)` gives
`(bar(d)-bar(a))+(bar(d)-bar(b))+(bar(d)-bar(c))=bar(0)`
`:.3bar(d)-(bar(a)+bar(b)+bar(c))=bar(0)`
`:.3bar(d)=bar(a)+bar(b)+bar(c)`
`:.bar(d)=(bar(a)+bar(b)+bar(c))/(3)`
Hence, D is the centroid of the `triangle ABC`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If A, B, C, D are four non-collinear points in the plane such that overline(AD)+overline(BD)+overline(CD)=overline(O) , then the point D is the … of triangle ABC.

If P is a point on the plane of DeltaABC such that bar(PA) + bar(PB) + bar(PC) = 0 , then, for Delta ABC, the point P is

If bar(PO)+bar(OQ)=bar(QO)+bar(OR), then prove that the points P,Q and R are collinear.

If P is a point in th e plane of D ABCD such that bar(AP) + bar(PB) + bar(CP) + bar(PD) = bar0 , then the quadrilateral is in general, a

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If A,B,C,D and E are five coplanar points,( then the value of )/(DA)+bar(DB)+bar(DC)+bar(AE)+bar(BE)+bar(CE) is equal to

If bar(a) and bar(b) be non collinear vectors such that |bar(a)times bar(b)|=bar(a).bar(b) then the angle between bar(a) and bar(b) is

If A,B,C and D are four points and bar(AB)=bar(DC) then bar(AC)+bar(BD)=(A)2vec AD(B)2vec CB(C)2vec AC(D) none

If A,(B,C,D are four points in space satisfying )/(CD)=K[|bar(AD)|^(2)+|bar(BC)|^(2)-|AC|^(2)-|BD|^(2)] then the value of K is

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A,B,C and P are bar(a),bar(b),bar(c) and (bar(a)+bar(b)+bar(c))/(4) respectively then the positive vector of the orthocentre of the triangle is