Home
Class 12
MATHS
If G and Gprime are the centroids of the...

If `G and Gprime` are the centroids of the triangle `ABC and AprimeBprimeCprime,` then the value of `bar(A Aprime)+bar(B Bprime)+bar(C Cprime)` equals

Text Solution

Verified by Experts

Let `bar(a),bar(b),bar(c),bar(a'),bar(b'),bar(c'),bar(g)` and `bar(g')` be the position vectors of the points A,B,C,A',B',C,G and G' respectively. G and G' are the centroids of `triangleABC` and `triangleA'B'C'` respectively`.
`:.` by the centroid formula,
`bar(g)=(bar(a)+bar(b)+bar(c))/(3) andbar(g')=(bar(a')+bar(b')+bar(c'))/(3)`
`:.bar(a)+bar(b)+bar(c)=3bar(g)andbar(a')+bar(b')+bar(c')=3bar(g')` . . . (1)
Now `bar(A A')=bar(a')=bar(a'),bar(BB')=bar(b')-bar(b),bar(C C')=bar(c')=bar(c)andbar(GG')=bar(g')=bar(g)`
`:.bar(A A')+bar(BB')+bar(C C')=(bar(a')-bar(a))+(bar(b')-bar(b))+(bar(c')-bar(c))`
`=(bar(a')+bar(b')+bar(c'))-(bar(a)+bar(b)+bar(c))`
`=3bar(g')-3bar(g)`
`=3(bar(g')-bar(g))` . . . [By (1)]
`=3bar(GG')`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

Ifc G be the centroid of the triangle ABC,then the value of bar(AG)+bar(BG)+bar(CG) equals (O being origin

If G be the centroid of the triangle ABC,then the value of bar(AG)+bar(BG)+( triangle ABC, then )/(CG equals (O being ) origin )

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

If G is the centroid of Delta ABC, then bar(CA) + bar(CB) =

If A,B,C,D and E are five coplanar points,( then the value of )/(DA)+bar(DB)+bar(DC)+bar(AE)+bar(BE)+bar(CE) is equal to

If G is the centroid of triangleABC and O is any point in the plane of triangleABC , show that (1) bar(GA)+bar(GB)+bar(GC)=bar(0) (2) bar(OA)+bar(OB)+bar(OC)=3bar(OG) .

If G_(1),G_(2) are centroids of triangles A_(1),B_(1),C_(1) and A_(2),B_(2),C_(2) respectively, then bar(A_(1)A_(2))+bar(B_(1)B_(2))+bar(C_(1)C_(2)) =

Let bar(p) is the p.v. of the orthocentre $bar(g) is the p.V of the centroid of the triangle ABC where circumcente is the origin.If bar(p)=Kbar(g), then K=

[bar(a)" "bar(b)" "bar(a)xxbarb] is equal to

The length of altitude through the vertex A of triangle ABC,The position vectors of whose vertices are bar(a),bar(b),bar(c)