Home
Class 12
MATHS
Find the volume of the parallelopiped wh...

Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hat(i)+3hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k)and4hat(i)+5hat(j)-2hat(k)`.

Text Solution

AI Generated Solution

To find the volume of the parallelepiped formed by the vectors \( \mathbf{A} = 2\hat{i} + 3\hat{j} - 4\hat{k} \), \( \mathbf{B} = 5\hat{i} + 7\hat{j} + 5\hat{k} \), and \( \mathbf{C} = 4\hat{i} + 5\hat{j} - 2\hat{k} \), we can use the scalar triple product formula. The volume \( V \) of the parallelepiped is given by the absolute value of the scalar triple product of the vectors: \[ V = |\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})| \] ### Step 1: Calculate the cross product \( \mathbf{B} \times \mathbf{C} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

The volume of the paralleloP1ped with co-terminous edges given by the vectors 2hat(i)+5hat(j)-4hat(k), 5hat(i)+7hat(j)+5hat(k), 4hat(i)+5hat(j)-2hat(k) is

The volume of the paralleloP1ped with co-terminous edges given by the vectors 3hat(i)-hat(j)+4hat(k), 6hat(i)+2hat(j)-5hat(k), 2hat(i)+hat(j)-3hat(k) is

Prove that the volume of the parallelopiped with coterminus edges as bar(a), bar(b), bar(c) is [bar(a),bar(b),bar(c)] and hence find the volume of the parallelopiped with its coterminus edges hat(i)+5hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k) and 4hat(i)+5hat(j)-2hat(k) .

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

Find the volume of the parallelopiped whose sides are given by the vectors : (i) 11hat(i), 2hat(j), 13 hat(k) (ii) 3hat(i)+4hat(j), 2hat(i)+3hat(j)+4hat(k), 5hat(k) .

The volume of the paralleloP1ped with co-terminous edges given by the vectors 3hat(i)+5hat(j), 4hat(i)+2hat(j)-3hat(k), 3hat(i)+hat(j)+4hat(k) is

Find the volume of the parallelopiped whose coterminus edges are : (1) 3hat(i)+5hat(k),4hat(i)+2hat(j)-3hat(k),3hat(i)+hat(j)+4hat(k) (2) bar(a)=hat(i)+hat(j),bar(b)=hat(j)+hat(k),bar(c)=hat(k)+hat(i) (3) 2hat(i)+5hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k),4hat(i)+5hat(j)-2hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.