Home
Class 12
MATHS
If bar(c)=3bar(a)-2bar(b), then prove th...

If `bar(c)=3bar(a)-2bar(b)`, then prove that `[bar(a)bar(b)bar(c)]=0`.

Text Solution

AI Generated Solution

To prove that \([ \bar{a}, \bar{b}, \bar{c} ] = 0\) given that \(\bar{c} = 3\bar{a} - 2\bar{b}\), we will follow these steps: ### Step 1: Substitute \(\bar{c}\) in the scalar triple product We start with the scalar triple product \([ \bar{a}, \bar{b}, \bar{c} ]\). By substituting the expression for \(\bar{c}\), we have: \[ [ \bar{a}, \bar{b}, \bar{c} ] = [ \bar{a}, \bar{b}, 3\bar{a} - 2\bar{b} ] \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [bar(a)bar(b)bar(c)] is

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If |bar(a)|=|bar(b)|=|bar(c)|=2 , and bar(a)*bar(b)=bar(b).bar(c)=bar(c)*bar(a)=2 then [bar(a) bar(b) bar(c)] = (1). 3sqrt(2) (2). 4sqrt(2) (3).32 (4).48

If |bar(a)|=|bar(b)|=|bar(c)|=2 and bar(a).bar(b)=bar(b).bar(c)=bar(c).bar(a)=2 then [bar(a) bar(b) bar(c)] equal to

If (bar(a),bar(b))=(pi)/(6),bar(c) is perpendicular to bar(a) and bar(b),|bar(a)|=3,|bar(b)|=4,|bar(c)|=6 then |[bar(a)bar(b)bar(c)]|

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

If (bar(a)xxbar(b))xxbar(c)=bar(a)xx(bar(b)xxbar(c)), where bar(a),bar(b) and bar(c) are any three vectors such that bar(a)*bar(b)!=0,bar(b)*bar(c)!=0, then bar(a) and bar(c) are

If bar(a)=2bar(i)+3bar(j),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=3bar(i)+lambdabar(j)+2bar(k) and [bar(a)bar(b)bar(c)]=-1 then lambda