Home
Class 12
MATHS
If bar(a),bar(b)andbar(c) are any three ...

If `bar(a),bar(b)andbar(c)` are any three vectors, prove that (1) `[bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)]` (2) `[bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0`

Text Solution

Verified by Experts

We use the following results :
(i) If any vector in a scalar triple product `[bar(a)bar(b)bar(c)]` is repeated, then `[bar(a)bar(b)bar(c)]=0`,
(ii) `bar(a)*(bar(b)xxbar(c))=bar(b)*(bar(c)xxbar(a))=bar(c)*(bar(a)xxbar(b))`
(1) `[bar(a)+bar(b)" "bar(b)+bar(c)" "bar(c)+bar(a)]`
`=(bar(a)+bar(b))*[(bar(b)+bar(c))xx(bar(c)+bar(a))]`
`=(bar(a)+bar(b))*[bar(b)xxbar(c)+bar(b)xxbar(a)+bar(c)xxbar(c)+bar(c)xxbar(a)]`
`=bar(a)*(bar(b)xxbar(c))+bar(a)*(bar(b)xxbar(a))+bar(a)*(bar(c)xxbar(c))+bar(a)*(bar(c)xxbar(a))+bar(b)*(bar(b)xxbar(c))+bar(b)*(bar(b)xxbar(a))+bar(b)*(bar(c)xxbar(c))+bar(b)*(bar(c)xxbar(a))`
`=bar(a)*(bar(b)xxbar(c))+0+0+0+0+0+0+bar(a)*(bar(b)xxbar(c))`
`=[bar(a)bar(b)bar(c)]+[bar(a)bar(b)bar(c)]=2[bar(a)bar(b)bar(c)]`.
(2) `[bar(a)" "bar(b)+bar(c)" "bar(a)+bar(b)+bar(c)]`
`=bar(a)*[(bar(b)+bar(c))xx(bar(a)+bar(b)+bar(c))]`
`=bar(a)*(bar(b)xxbar(a)+bar(b)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)+bar(c)xxbar(b)+bar(c)xxbar(c))`
`=bar(a)*(bar(b)xxbar(a))+bar(a)*(bar(b)xxbar(b))+bar(a)*(bar(b)xxbar(c))+bar(a)*(bar(c)xxbar(a))+bar(a)*(bar(c)xxbar(b))+bar(a)*(bar(c)xxbar(c))`
`=0+0+bar(a)*(bar(b)xxbar(c))+0-bar(a)*(bar(b)xxbar(c))+0=0`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)+bar(b)" "bar(a)+bar(c)" "bar(b)]=[bar(a)" "bar(c)" "bar(b)] (2) [bar(a)-bar(b)" "bar(b)-bar(c)" "bar(c)-bar(a)]=0 .

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bar(a)+bar(b)+bar(c), then

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =