Home
Class 12
MATHS
If bar(a),bar(b),bar(c) are non-coplanar...

If `bar(a),bar(b),bar(c)` are non-coplanar unit vectors each including the angle of measure `30^(@)` with the other, then find the volume of tetrahedron whose co-terminal edges are `bar(a),bar(b),bar(c)`.

Text Solution

Verified by Experts

`bar(a),bar(b)bar(c)` are three non - coplanar unit vectors each including the angle of measure `30^(@)`.
`:.bar(a)*bar(a)=bar(b)*bar(b)=bar(c)*bar(c)=1`
`bar(a)*bar(b)=bar(b)*bar(a)=1xx1xxcos30^(@)=(sqrt(3))/(2)`
`bar(a)*bar(c)=bar(c)*bar(a)=1xx1xxcos30^(@)=(sqrt(3))/(2)`
`bar(b)*bar(c)=bar(c)*bar(b)=1xx1xxcos30^(@)=(sqrt(3))/(2)`
Now, volume of tetrahedron `=(1)/(6)[bar(a)bar(b)bar(c)]`
`:.("volume")^(2)=(1)/(36)([bar(a)bar(b)bar(c)])^(2)`
`=(1)/(36)|{:(bar(a)*bar(a)" "bar(a)*bar(b)" "bar(a)*bar(c)),(bar(b)*bar(a)" "bar(b)*bar(b)" "bar(b)*bar(c)),(bar(c)*bar(a)" "bar(c)*bar(b)" "bar(c)*bar(c)):}|`
`=(1)/(36)|{:(1,(sqrt(3))/(2),(sqrt(3))/(2)),((sqrt(3))/(2),1,(sqrt(3))/(2)),((sqrt(3))/(2),(sqrt(3))/(2),1):}|`
`=(1)/(36)[1(1-(3)/(4))-(sqrt(3))/(2)((sqrt(3))/(2)-(3)/(4))+(sqrt(3))/(2)((3)/(4)-(sqrt(3))/(2))]`
`=(1)/(36)((3sqrt(3))/(4)-(5)/(4))=(3sqrt(3)-5)/(144)`
`:.` volume of tetrahedron `=(sqrt(3sqrt(3)-5))/(12)` cu units
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

Derive the expression for the volume of the prallelopiped whose coterminus edges are vectors bar(a),bar(b),bar(c) .

bar(a),bar(b),bar(c ) are three coplanar vectors, If bar(a) is not parallel to bar(b) , Show that

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

If bar(a),bar(b) and bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(1)/(sqrt(2))(bar(b)+bar(c)) ],then which of the following statements are correct A. (bar(a),bar(c))=(3 pi)/(4) B. (bar(a),bar(b))=(3 pi)/(4) C. (bar(a),bar(b)+bar(c))=(pi)/(2) D.(bar(b),bar(c))=0

If bar(a),bar(b),bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(sqrt(3))/(2)(bar(b)+bar(c)) then the angle between bar(a) and bar(b) is ( bar(b) and bar(c) are non collinear)

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If |[bar(a).bar(a), bar(a).bar(b),bar(a).bar(c)], [bar(a).bar(b), bar(b).bar(b), bar(b).bar(c)], [bar(a).bar(c), bar(b).bar(c), bar(c).bar(c)]| =144 then the volume of tetrahedron formed with coterminous edges bar(a) ,bar(b) and bar(c) is equal to

bar(a) and bar(b) are non-collinear vectors. If bar(c)=(x-2)bar(a)+bar(b) and bar(d)=(2x+1)bar(a)-bar(b) are collinear, then find the value of x.

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

If bar(a),bar(b),bar(c) are non-zero,non-coplanar vectors then {bar(a)times(bar(b)+bar(c))}times{bar(b)times(bar(c)-bar(a))} is collinear with the vector