Home
Class 12
MATHS
Three non - zero vectors bar(a),bar(b),b...

Three non - zero vectors `bar(a),bar(b),bar(c)` are complanar if and only if there exist scalars x,y,z, not all zero simultaneously such that `xbar(a)+ybar(b)+zbar(c)=bar(0)`.

Text Solution

Verified by Experts

Let `bar(a),bar(b),bar(c)` be coplanar vectors. Then any one of them, say `bar(a)`, will be the linear combination of `bar(b)andbar(c)`.
`:.` there exist scalars `alphaandbeta` such that
`bar(a)=alphabar(b)+betabar(c)`
`:.(-1)bar(a)+alphabar(b)+betabar(c)=bar(0),i.e.,xbar(a)+ybar(b)+zbar(c)=bar(0)`
where `x=-1,y=alpha,z=beta` which are not all zero simultaneously.
Conversely : Let there exist scalars x,y,z not all zero such that
`xbar(a)+ybar(b)+zbar(c)=bar(0)` . . . (1)
Let `x!=0`, then divide (1) by s, we get
`i.e.,bar(a)+((y)/(x))bar(b)+((z)/(x))bar(c)=bar(0)`
`:.bar(a)=(-(y)/(x))bar(b)+(-(z)/(x))bar(c)`
`i.e.,bar(a)=alphabar(b)+betabar(c)`, where `alpha=(-y)/(x)andbeta=(-z)/(x)` are scalars.
`:.bar(a)` is the linear combination of `bar(b)andbar(c)`.
Hence, `bar(a),bar(b),bar(c)` are coplanar.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

bar(a),bar(b),bar(c ) are three coplanar vectors, If bar(a) is not parallel to bar(b) , Show that

If vec a is perpendicular to vec b and p is non zero scalar such that pbar(r)+(bar(r).bar(b))bar(a)=bar(c)

Three vectors bar(A),bar(B) and bar(C) add up to zero. Find which is false.

For non -zero vectors a and b if |bar(a)+bar(bar(b))|<|bar(a)-bar(b)|| then bar(a) and bar(b) are

The vectors bar(a),bar(b)&bar(c) each two of which are non collinear. If bar(a)+bar(b) is collinear with bar(c),bar(b)+bar(c) is collinear with bar(a)&|bar(a)|=|bar(b)|=|bar(c)|=sqrt(2) .Then the value of |bar(a).bar(b)+bar(b).bar(c)+bar(c).bar(a)|=

For any three non-zero vectors bar(a),bar(b),bar(c),|bar(a)xxbar(b).bar(c)|=|bar(a)||bar(b)||bar(c)| hold if and only if

Given four non zero vectors bar a,bar b,bar c and bar d. The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

If bar(a),bar(b),bar(c) are non coplanar vectors and lambda is a real number then [lambda(bar(a)+bar(b))lambda^(2)bar(b)lambdabar(c)]=[bar(a)bar(b)+bar(c)bar(b)] for

Let bar(a) , bar(b) , bar(c) be three non- zero vectors which are pair-wise non- collinear.If bar(a)+3bar(b) is collinear with bar(c) and bar(b)+2bar(c) is collinear with bar(a) , then bar(a)+3bar(b)+6bar(c)=...........