Home
Class 12
MATHS
If the vectors 3hat(i)-5hat(j)+hat(k)and...

If the vectors `3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k)` are collinear, then find the value p.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) such that the vectors \( \mathbf{a} = 3\hat{i} - 5\hat{j} + \hat{k} \) and \( \mathbf{b} = 9\hat{i} - 15\hat{j} + p\hat{k} \) are collinear, we can use the property that two vectors are collinear if their cross product is zero. ### Step 1: Set up the cross product The cross product of two vectors \( \mathbf{a} \) and \( \mathbf{b} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of the vectors. \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -5 & 1 \\ 9 & -15 & p \end{vmatrix} \] ### Step 2: Calculate the determinant We can expand this determinant using the first row: \[ \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} -5 & 1 \\ -15 & p \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 9 & p \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -5 \\ 9 & -15 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -5 & 1 \\ -15 & p \end{vmatrix} = (-5)p - (1)(-15) = -5p + 15 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ 9 & p \end{vmatrix} = (3)p - (1)(9) = 3p - 9 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -5 \\ 9 & -15 \end{vmatrix} = (3)(-15) - (-5)(9) = -45 + 45 = 0 \] ### Step 3: Combine results Putting it all together, we have: \[ \mathbf{a} \times \mathbf{b} = (-5p + 15)\hat{i} - (3p - 9)\hat{j} + 0\hat{k} \] ### Step 4: Set the cross product to zero For the vectors to be collinear, the cross product must equal zero: \[ (-5p + 15)\hat{i} - (3p - 9)\hat{j} + 0\hat{k} = 0 \] This gives us two equations: 1. \( -5p + 15 = 0 \) 2. \( 3p - 9 = 0 \) ### Step 5: Solve for \( p \) From the first equation: \[ -5p + 15 = 0 \implies 5p = 15 \implies p = 3 \] From the second equation: \[ 3p - 9 = 0 \implies 3p = 9 \implies p = 3 \] Both equations yield the same result. ### Conclusion Thus, the value of \( p \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If the vectors 2 hat(i) - q hat(j) + 3 hat(k) and 4 hat(i) - 5 hat(j) + 6 hat(k) are collinear then find the value of q.

If the vectors -3hat(i)+4hat(j)-2hat(k),hat(i)+2hat(k),hat(i)-phat(j) are coplanar, then the value of p is

If vectors hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3hat(j) - a hat(k) are equal vectors, then the value of a is :

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k) are perpendicular to the vector hat(i)+hat(j)+hat(k) is are

NAVNEET PUBLICATION - MAHARASHTRA BOARD-VECTORS-Examples for Practics
  1. If bar(a),bar(b)andbar(c) are the position vectors of the points A,B a...

    Text Solution

    |

  2. Find the coordinates of the points R which divides the line segment jo...

    Text Solution

    |

  3. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  4. If bar(p)=hat(i)-2hat(j)+hat(k)andbar(q)=hat(i)+4hat(j)-2hat(k) are po...

    Text Solution

    |

  5. Find the position vector of R which divides the line segment joining t...

    Text Solution

    |

  6. If bar(a),bar(b),bar(c) are the position vectors of the points A(1,3,0...

    Text Solution

    |

  7. If G(a,2,-1) is the centroid of the triangle with vertices P(1,3,2),Q(...

    Text Solution

    |

  8. If the points A(2,p,1),B(1,2,q) and C(3,2,1) are collinear, then find ...

    Text Solution

    |

  9. Express bar(p) as a linear combination of bar(a),bar(b)andbar(c), wher...

    Text Solution

    |

  10. Express the vector bar(a)=9hat(i)+hat(j)+2hat(k) as a linear combinati...

    Text Solution

    |

  11. If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show...

    Text Solution

    |

  12. If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+...

    Text Solution

    |

  13. D, E, F are the midpoints of the sides BC, CA and AB respectively of t...

    Text Solution

    |

  14. Show that if bar(AB)=bar(DC), then the figure ABCD is a parallelogram.

    Text Solution

    |

  15. If G is the centroid of triangleABC and O is any point in the plane of...

    Text Solution

    |

  16. Find [bar(a)bar(b)bar(c)] where : (1) bar(a)=2hat(i)+hat(j)-hat(k),b...

    Text Solution

    |

  17. If bar(a)=hat(i)+hat(j)+hat(k),bar(b)=2hat(i)+qhat(j)+hat(k),hat(c)=ha...

    Text Solution

    |

  18. Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2...

    Text Solution

    |

  19. Find the volume of the parallelopiped whose coterminus edges are : (...

    Text Solution

    |

  20. Find lamda, if the vectors bar(a)=hat(i)+hat(j)+hat(k),bar(b)=hat(i)-h...

    Text Solution

    |