Home
Class 12
MATHS
If bar(p)=hat(i)-2hat(j)+hat(k)andbar(q)...

If `bar(p)=hat(i)-2hat(j)+hat(k)andbar(q)=hat(i)+4hat(j)-2hat(k)` are position vectors points P and Q. find the position vector of the points R which divides segment PQ internally in the ratio 2:1.

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of point R that divides the segment PQ internally in the ratio 2:1, we will use the section formula. Let's denote the position vectors of points P and Q as follows: - Position vector of P, \( \bar{p} = \hat{i} - 2\hat{j} + \hat{k} \) - Position vector of Q, \( \bar{q} = \hat{i} + 4\hat{j} - 2\hat{k} \) ### Step 1: Identify the vectors and the ratio We need to find the position vector of R which divides the segment PQ in the ratio 2:1. Here, we can denote: - \( m = 2 \) (the part of Q) - \( n = 1 \) (the part of P) ### Step 2: Apply the section formula The section formula states that if a point R divides the line segment joining points A and B in the ratio \( m:n \), then the position vector of R is given by: \[ \bar{r} = \frac{m \bar{b} + n \bar{a}}{m+n} \] In our case: - \( \bar{a} = \bar{p} \) (position vector of P) - \( \bar{b} = \bar{q} \) (position vector of Q) Substituting the values into the formula: \[ \bar{r} = \frac{2 \bar{q} + 1 \bar{p}}{2 + 1} \] ### Step 3: Substitute the position vectors Now substituting \( \bar{p} \) and \( \bar{q} \): \[ \bar{r} = \frac{2(\hat{i} + 4\hat{j} - 2\hat{k}) + 1(\hat{i} - 2\hat{j} + \hat{k})}{3} \] ### Step 4: Calculate the components Calculating the components inside the numerator: 1. For \( \hat{i} \): \[ 2(\hat{i}) + 1(\hat{i}) = 2\hat{i} + \hat{i} = 3\hat{i} \] 2. For \( \hat{j} \): \[ 2(4\hat{j}) + 1(-2\hat{j}) = 8\hat{j} - 2\hat{j} = 6\hat{j} \] 3. For \( \hat{k} \): \[ 2(-2\hat{k}) + 1(\hat{k}) = -4\hat{k} + \hat{k} = -3\hat{k} \] Combining these results, we have: \[ \bar{r} = \frac{3\hat{i} + 6\hat{j} - 3\hat{k}}{3} \] ### Step 5: Simplify the expression Now, simplifying this gives: \[ \bar{r} = \hat{i} + 2\hat{j} - \hat{k} \] ### Final Result Thus, the position vector of point R is: \[ \bar{r} = \hat{i} + 2\hat{j} - \hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If vec a=4hat i-3hat j and vec b=-2hat i+5hat j are the position vectors of the points A and B respectively find (i) the position vector of the middle point of the bar(AB)

The position vectors of A and B are 2hat i+hat j-hat k and hat i+2hat j+3hat k respectively. The position vector of the point which divides the line segment AB in the ratio 2:3 is

The position vectors of A and B are 2hat i+hat j-hat k and hat i+2hat j+3hat k respectively. The position vector of the point which divides the line segment AB in the ratio 2:3 is

Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4hat(j)+7hat(k) . What is the vector perpendicular to both the vectors ?

If bar(a)=hat i+2hat j-hat k and bar(b)=3hat i+hat j-5hat k find a unit vector in a direction parallel to vector (bar(a)-bar(b))

If bar(P)=hat i+hat j+hat k,bar(Q)=2hat i-hat j-hat k , then bar(P)-bar(Q) is

If bar a=hat i+hat j-4hat k and bar(b)=hat 4i-hat j-2hat k then find (i) a unit vector in the direction of the vector (2bar(a)-bar(b))

Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

NAVNEET PUBLICATION - MAHARASHTRA BOARD-VECTORS-Examples for Practics
  1. Find the coordinates of the points R which divides the line segment jo...

    Text Solution

    |

  2. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  3. If bar(p)=hat(i)-2hat(j)+hat(k)andbar(q)=hat(i)+4hat(j)-2hat(k) are po...

    Text Solution

    |

  4. Find the position vector of R which divides the line segment joining t...

    Text Solution

    |

  5. If bar(a),bar(b),bar(c) are the position vectors of the points A(1,3,0...

    Text Solution

    |

  6. If G(a,2,-1) is the centroid of the triangle with vertices P(1,3,2),Q(...

    Text Solution

    |

  7. If the points A(2,p,1),B(1,2,q) and C(3,2,1) are collinear, then find ...

    Text Solution

    |

  8. Express bar(p) as a linear combination of bar(a),bar(b)andbar(c), wher...

    Text Solution

    |

  9. Express the vector bar(a)=9hat(i)+hat(j)+2hat(k) as a linear combinati...

    Text Solution

    |

  10. If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show...

    Text Solution

    |

  11. If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+...

    Text Solution

    |

  12. D, E, F are the midpoints of the sides BC, CA and AB respectively of t...

    Text Solution

    |

  13. Show that if bar(AB)=bar(DC), then the figure ABCD is a parallelogram.

    Text Solution

    |

  14. If G is the centroid of triangleABC and O is any point in the plane of...

    Text Solution

    |

  15. Find [bar(a)bar(b)bar(c)] where : (1) bar(a)=2hat(i)+hat(j)-hat(k),b...

    Text Solution

    |

  16. If bar(a)=hat(i)+hat(j)+hat(k),bar(b)=2hat(i)+qhat(j)+hat(k),hat(c)=ha...

    Text Solution

    |

  17. Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2...

    Text Solution

    |

  18. Find the volume of the parallelopiped whose coterminus edges are : (...

    Text Solution

    |

  19. Find lamda, if the vectors bar(a)=hat(i)+hat(j)+hat(k),bar(b)=hat(i)-h...

    Text Solution

    |

  20. If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)...

    Text Solution

    |