Home
Class 12
MATHS
If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3...

If `bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+5bar(c)` are coplanar, then find value of `lamda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \(\lambda\) such that the vectors \(\bar{a} + \lambda \bar{b} + 3 \bar{c}\), \(-2 \bar{a} + 3 \bar{b} - 4 \bar{c}\), and \(\bar{a} - 3 \bar{b} + 5 \bar{c}\) are coplanar. ### Step-by-Step Solution: 1. **Identify the Vectors:** Let: \[ \bar{u} = \bar{a} + \lambda \bar{b} + 3 \bar{c} \] \[ \bar{v} = -2 \bar{a} + 3 \bar{b} - 4 \bar{c} \] \[ \bar{w} = \bar{a} - 3 \bar{b} + 5 \bar{c} \] 2. **Condition for Coplanarity:** The vectors \(\bar{u}\), \(\bar{v}\), and \(\bar{w}\) are coplanar if the scalar triple product is zero: \[ \bar{u} \cdot (\bar{v} \times \bar{w}) = 0 \] This can be represented using the determinant of a matrix formed by the coefficients of the vectors. 3. **Set Up the Determinant:** We can create a determinant using the coefficients of \(\bar{a}\), \(\bar{b}\), and \(\bar{c}\): \[ \begin{vmatrix} 1 & \lambda & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0 \] 4. **Calculate the Determinant:** Expanding the determinant: \[ = 1 \begin{vmatrix} 3 & -4 \\ -3 & 5 \end{vmatrix} - \lambda \begin{vmatrix} -2 & -4 \\ 1 & 5 \end{vmatrix} + 3 \begin{vmatrix} -2 & 3 \\ 1 & -3 \end{vmatrix} \] 5. **Compute Each 2x2 Determinant:** - For \( \begin{vmatrix} 3 & -4 \\ -3 & 5 \end{vmatrix} = (3)(5) - (-4)(-3) = 15 - 12 = 3 \) - For \( \begin{vmatrix} -2 & -4 \\ 1 & 5 \end{vmatrix} = (-2)(5) - (-4)(1) = -10 + 4 = -6 \) - For \( \begin{vmatrix} -2 & 3 \\ 1 & -3 \end{vmatrix} = (-2)(-3) - (3)(1) = 6 - 3 = 3 \) 6. **Substitute Back into the Determinant:** \[ 1(3) - \lambda(-6) + 3(3) = 0 \] This simplifies to: \[ 3 + 6\lambda + 9 = 0 \] \[ 12 + 6\lambda = 0 \] 7. **Solve for \(\lambda\):** \[ 6\lambda = -12 \implies \lambda = -2 \] ### Final Answer: The value of \(\lambda\) is \(-2\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If bar(a) , bar(b) , bar(c) are non -zero,non - coplanar vectors and bar(a)+bar(b)+bar(c) , -a+8bar(b)+7bar(c) , 5bar(a)+lambdabar(b)-3bar(c) are coplanar,then the value of |lambda| is

Show that points with p.v bar(a)-2bar(b)+3bar(c ),-2bar(a)+3bar(b)-bar(c ),4bar(a)-7bar(b)+7bar(c ) are collinear. It is given that vectors bara,barb,bar c are non-coplanar.

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

If the vectors bar(a)+bar(b)+bar(c),bar(a)+lambdabar(b)+2bar(c) and -bar(a)+bar(b)+bar(c) are linearly dependent then lambda is

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation

If bar(a),bar(b),bar(c) are non-coplanar vectors.Prove that the four points -bar(a)+4bar(b)-3bar(c) , 3bar(a)+2bar(b)-5bar(c) , -3bar(a)+8bar(b)-5bar(c) , -3bar(a)+2bar(b)+bar(c) are coplanar.

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

NAVNEET PUBLICATION - MAHARASHTRA BOARD-VECTORS-Examples for Practics
  1. Express bar(p) as a linear combination of bar(a),bar(b)andbar(c), wher...

    Text Solution

    |

  2. Express the vector bar(a)=9hat(i)+hat(j)+2hat(k) as a linear combinati...

    Text Solution

    |

  3. If bar(a),bar(b),bar(c) are non-zero, non -coplanar vectors, then show...

    Text Solution

    |

  4. If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+...

    Text Solution

    |

  5. D, E, F are the midpoints of the sides BC, CA and AB respectively of t...

    Text Solution

    |

  6. Show that if bar(AB)=bar(DC), then the figure ABCD is a parallelogram.

    Text Solution

    |

  7. If G is the centroid of triangleABC and O is any point in the plane of...

    Text Solution

    |

  8. Find [bar(a)bar(b)bar(c)] where : (1) bar(a)=2hat(i)+hat(j)-hat(k),b...

    Text Solution

    |

  9. If bar(a)=hat(i)+hat(j)+hat(k),bar(b)=2hat(i)+qhat(j)+hat(k),hat(c)=ha...

    Text Solution

    |

  10. Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2...

    Text Solution

    |

  11. Find the volume of the parallelopiped whose coterminus edges are : (...

    Text Solution

    |

  12. Find lamda, if the vectors bar(a)=hat(i)+hat(j)+hat(k),bar(b)=hat(i)-h...

    Text Solution

    |

  13. If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)...

    Text Solution

    |

  14. Find the volume of the parallelopiped with segments AB, AC and AD as c...

    Text Solution

    |

  15. Find the volume of the tetrahedron whose vertices are A(3,7,4),B(5,-2,...

    Text Solution

    |

  16. Find the volume tetrahedron whose coterminus edges are 7hat(i)+hat(k),...

    Text Solution

    |

  17. Show that the following sets of points are coplanar : (1) (3,9,4),(0...

    Text Solution

    |

  18. Find the value of x, if the points A(3,2,1),B(4,x,5),C(4,2,2)andD(6,5,...

    Text Solution

    |

  19. If the origin and the points P(2,3,4), Q(1,2,3) and R(x,y,z) are copla...

    Text Solution

    |

  20. If bar(u)=bar(i)-2bar(j)+bar(k),bar(v)=3bar(i)+bar(k)andbar(w)=bar(j)-...

    Text Solution

    |