Home
Class 12
MATHS
Find the volume of the tetrahedron whose...

Find the volume of the tetrahedron whose vertices are A(3,7,4),B(5,-2,3)C(-4,5,6) and D(1,2,3).

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron with vertices A(3,7,4), B(5,-2,3), C(-4,5,6), and D(1,2,3), we can use the formula for the volume of a tetrahedron given by the scalar triple product of vectors originating from one vertex to the other three vertices. ### Step-by-step Solution: 1. **Identify the vertices**: - A(3, 7, 4) - B(5, -2, 3) - C(-4, 5, 6) - D(1, 2, 3) 2. **Calculate the vectors**: - **Vector AD**: \[ \vec{AD} = \vec{A} - \vec{D} = (3 - 1, 7 - 2, 4 - 3) = (2, 5, 1) \] - **Vector BD**: \[ \vec{BD} = \vec{B} - \vec{D} = (5 - 1, -2 - 2, 3 - 3) = (4, -4, 0) \] - **Vector CD**: \[ \vec{CD} = \vec{C} - \vec{D} = (-4 - 1, 5 - 2, 6 - 3) = (-5, 3, 3) \] 3. **Set up the scalar triple product**: The volume \( V \) of the tetrahedron can be calculated using the formula: \[ V = \frac{1}{6} |\vec{AD} \cdot (\vec{BD} \times \vec{CD})| \] 4. **Calculate the cross product \( \vec{BD} \times \vec{CD} \)**: \[ \vec{BD} \times \vec{CD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -4 & 0 \\ -5 & 3 & 3 \end{vmatrix} \] Expanding the determinant: \[ = \hat{i}((-4)(3) - (0)(3)) - \hat{j}((4)(3) - (0)(-5)) + \hat{k}((4)(3) - (-4)(-5)) \] \[ = \hat{i}(-12) - \hat{j}(12) + \hat{k}(12 - 20) \] \[ = -12\hat{i} - 12\hat{j} - 8\hat{k} \] 5. **Calculate the dot product \( \vec{AD} \cdot (\vec{BD} \times \vec{CD}) \)**: \[ \vec{AD} \cdot (-12\hat{i} - 12\hat{j} - 8\hat{k}) = (2)(-12) + (5)(-12) + (1)(-8) \] \[ = -24 - 60 - 8 = -92 \] 6. **Calculate the volume**: \[ V = \frac{1}{6} | -92 | = \frac{92}{6} = \frac{46}{3} \] ### Final Answer: The volume of the tetrahedron is \( \frac{46}{3} \) cubic units. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|10 Videos
  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of a tetrahedrn whose vertices are A(-1,2,3),B(3,-2,1),C(2,1,3) and D(-1,-2,4).

Find the area of the triangle whose vertices are: (-3,2),(5,4),(7,-6)

Knowledge Check

  • The volume of the tetrahedron whose vertices are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) are

    A
    `(42)/(3)`cu. Units
    B
    `(41)/(3)`cu. Units
    C
    `(46)/(3)`cu. Units
    D
    `(45)/(2)`cu. Units
  • The volume of the tetrahedron whose vertices are A(1,-1,10),B(-1,-3,7),C(5,-1,1) and D(7,-4,7) is

    A
    26
    B
    29
    C
    32
    D
    None of these
  • The volume of the tetrahedron whose vertices are A(-1, 2, 3), B(3, -2, 1), C(2, 1, 3) and C(-1, -2, 4)

    A
    `(2)/(3)` cu. Units
    B
    `(32)/(3)`cu. Units
    C
    `(8)/(3)`cu. Units
    D
    `(16)/((3)`cu. Units
  • Similar Questions

    Explore conceptually related problems

    Find the area of the quadrilateral whose vertices are A(1,1),B(3,4),C(5,-2) and D(4,-7)

    Find the area of the pentagon whose vertices are A(4,3) , B(-5,6),C(-7,2),D(0,-7)and E(3,-6)

    Find the area of the quadrilateral whose vertices are A(-4,5), B(0,7), C(5,-5) and D(-4,-2).

    Find the area of the quadrilateral ABCD whose vertices are A(1,0),B(5,3),C(2,7) and D(-2,4)

    If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7),(5,-1,lamda) and (7,-4,7) is 11 cubit units then lamda=