Home
Class 12
MATHS
The value of x when the points A(2,-1,1)...

The value of x when the points `A(2,-1,1),B(4,0,3),C(x,1,1)andD(2,4,3)` are coplanar is

A

1

B

0

C

2

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) when the points \( A(2,-1,1) \), \( B(4,0,3) \), \( C(x,1,1) \), and \( D(2,4,3) \) are coplanar, we can use the concept of vectors and the scalar triple product. The points are coplanar if the scalar triple product of the vectors formed by these points is zero. ### Step-by-Step Solution: 1. **Define the Vectors:** We will first find the vectors \( \overrightarrow{AB} \), \( \overrightarrow{BC} \), and \( \overrightarrow{CD} \). - Vector \( \overrightarrow{AB} = B - A = (4 - 2, 0 - (-1), 3 - 1) = (2, 1, 2) \) - Vector \( \overrightarrow{BC} = C - B = (x - 4, 1 - 0, 1 - 3) = (x - 4, 1, -2) \) - Vector \( \overrightarrow{CD} = D - C = (2 - x, 4 - 1, 3 - 1) = (2 - x, 3, 2) \) 2. **Set Up the Scalar Triple Product:** The points are coplanar if the scalar triple product \( \overrightarrow{AB} \cdot (\overrightarrow{BC} \times \overrightarrow{CD}) = 0 \). We can express this as a determinant: \[ \begin{vmatrix} 2 & 1 & 2 \\ x - 4 & 1 & -2 \\ 2 - x & 3 & 2 \end{vmatrix} = 0 \] 3. **Calculate the Determinant:** We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{Determinant} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows. Here, we have: \[ = 2 \begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix} - 1 \begin{vmatrix} x - 4 & -2 \\ 2 - x & 2 \end{vmatrix} + 2 \begin{vmatrix} x - 4 & 1 \\ 2 - x & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: - First determinant: \( 1 \cdot 2 - (-2) \cdot 3 = 2 + 6 = 8 \) - Second determinant: \( (x - 4) \cdot 2 - (-2)(2 - x) = 2x - 8 + 4 - 2x = -4 \) - Third determinant: \( (x - 4) \cdot 3 - 1(2 - x) = 3x - 12 - 2 + x = 4x - 14 \) Putting it all together: \[ 2(8) - 1(-4) + 2(4x - 14) = 0 \] \[ 16 + 4 + 8x - 28 = 0 \] \[ 8x - 8 = 0 \] \[ 8x = 8 \] \[ x = 1 \] ### Final Answer: The value of \( x \) when the points are coplanar is \( x = 1 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practics|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of p if the points A(2,-1,1),B(4,0,p),C(1,1,1) and D(2,4,3) are coplanar.

If the points A(2, -1, 1), B(4, 0, p), C(1, 1, 1), D(2, 4, 3) are coplanar, then p=

Find the value of x, if the points A(3,2,1),B(4,x,5),C(4,2,2)and(6,5,-1) are coplanar.

Show that the points A(2,1,-1),B(0,-1,0),C(4,0,4) and (2,0,1) are coplanar.

. Show that the points A(2,1,-1),B(0,-1,0),C(4,0,4) and D(2,0,1) are coplanar.

Show that the points A(2,1, -1), B(0, -1, 0), C(4, 0, 4) and D(2,0,1) are coplanar.

If the points (3,9,x), (-4,4,4), (4,5,1) and (0,-1,-1) are coplanar, then x=

Using vectors,find the value of x such that the four points A(x,5,-1),B(3,2,1),C(4,5,5) and D(4,2,-2) are coplanar.

Show that the points A(-1,4,-3),B(3,2,-5),C(-3,8,-5) and D(-3,2,1) are coplanar.

If four point A(1,0,3),B(-1,3,4),C(1,2;1) and D(k,2,5) are coplanar,then k=