Home
Class 12
MATHS
If the line vec(OR) makes angles theta(...

If the line `vec(OR)` makes angles ` theta_(1),theta_(2),theta_(3)` with the planes ` XOY, YOZ, ZOX` respectively , then ` cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3)` is equal to

Text Solution

Verified by Experts

Let `P(x, y, z)` be a point on the line and `OP = r(gt o)`
Draw seg PN perpendicular to the XOY-plane.
Since line ON lies in XOY-plane and the line OP makes an angle `theta_(1)` with XOY-plane
`therefore mangleNOP = theta_(1)` and N is `(x, y, 0)`.
`therefore ON = sqrt(x^(2)+y^(2))`and
`OP = r = sqrt(r^(2) + y^(2) +z^(2)).`
ON = projection of seg OP on the XOY-plane = r `cos theta_(1)`
`therefore cos theta_(1) = (ON)/(r ) = (sqrt(^(2) + y^(2)))/(r )`
Similarly, we can show that
`cos theta_(2)=(sqrt(y^(2)+z^(2)))/(r)andtheta_(3)=(sqrt(z^(2)+x^(2)))/(r)`
`therefore cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3)=(x^(2)+y^(2))/(r^(2))+(y^(3)+z^(2))/(r^(2))+(z^(2)+x^(2))/(r^(2))`
`=(2(x^(2)+y^(2)+z^(2)))/(r^(2))=(2r^(2))/(r^(2))=2.`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Question|2 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example for Practice|14 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|12 Videos

Similar Questions

Explore conceptually related problems

If the line passing through origin makes angles theta_(1), theta_(2), theta_(3) with the planes XOY, YOZ and ZOX, then sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)=

If a line makes angles theta_(1), theta_(2), theta_(3) with the coordinates planes, then sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)= ………….

A line makes angle theta_(1),theta_(2),theta_(3) and theta_(4) with the diagonals of cube.Show that cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3)+cos^(2)theta_(4)=(4)/(3)

If theta "is theta " and (cos^(2)theta)/(cot^(2) theta -cos^(2) theta) =3 then theta is equal to

Let vec(a), vec(b), vec(c) are three unit vector such that vec(a)+vec(b)+vec(c) os also a unit vector. If pairwise angles between vec(a), vec(b), vec(c) are theta_(1), theta_(2) and theta_(3) respectively then cos theta_(1)+cos theta_(2)+ cos theta_(3) equals

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

If theta =(pi)/(2 ^(n) +1), then cos theta cos 2 theta cos 2^(2) theta …cos 2 ^(n-1)theta is equal to

cos theta cos2 theta cos3 theta=(1)/(4)

2cos theta-cos3 theta-cos5 theta-16cos^(3)theta sin^(2)theta=