Home
Class 12
MATHS
The angle between the lines bar(r) = (2h...

The angle between the lines `bar(r) = (2hati - 5hatj + hatk) + lamda(3hati + 2hatj + 6 hatk ) "and" bar(r) = (7hati - 6hatk) + mu(hati + 2hatj + 2hatk)` is

A

`(|(bar(a_(2)) - bar(a_(1))).(bar(b_(1))xx barb_(2))|)/(|barb_(1) xx barb_(2)|)`

B

`(|(bar(a_(2)) - bar(b_(1))).(bar(a_(2))xx barb_(2))|)/(|barb_(1) xx barb_(2)|)`

C

`(|(bar(a_(2)) - bar(b_(2))).(bar(a_(1))xx barb_(1))|)/(|barb_(1) xx barb_(2)|)`

D

`(|(bar(a_(1)) - bar(b_(2))).(bar(b_(1))xx bara_(2))|)/(|barb_(1) xx barb_(2)|)`

Text Solution

Verified by Experts

The correct Answer is:
`cos^(-1)(19)/(21)`
Promotional Banner

Topper's Solved these Questions

  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise examples for practice|20 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • LINEAR PROGRAMMING

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|8 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines bar(r) = (4hati - hatj) + lamda(hati + 2hatj - 3hatk) and bar(r) = (hati - hatj + 2hatk) + mu(hati + 4hatj - 5hatk).

Find the angle between the pair of lines bar r = ( 3 hati + 2 hatj - 4hatk ) + lamda ( hati + 2hatj + 2hatk ) and bar r = ( 5hati - 2 hatk ) + mu ( 3hati + 2 hatj + 6 hatk )

Find the angle between the line barr = (hati + 2hatj + hatk) + lambda(hati +hatj + hatk) and the plane barr*(2hati - hatj + hatk) = 5 .

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the angle between the lines vecr = 3 hati - 2 hatj + 6 hatk + lamda (2 hati + hatj + 2 hatk) and vecr=(2 hatj - 5 hatk)+ mu (6 hati + 3 hatj + 2hatk).

The acute angle between the line bar r = ( hati + 2 hatj + hatk ) + lamda (hati + hatj +hatk) and the plane bar r ( 2hati - hatj +hatk)=5

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

Find the shortest distance between the lines vecr = 3 hati + 2hatj - 4 hatk + lamda ( hati +2 hatj +2 hatk ) and vecr = 5 hati - 2hatj + mu ( 3hati + 2hatj + 6 hatk) If the lines intersect find their point of intersection