Home
Class 12
MATHS
If y = f(x) and x = g(y), where g is the...

If y = f(x) and x = g(y), where g is the inverse of f, i.e., `g = f^(-1)` and if `(dy)/(dx) and (dx)/(dy)` both exist and `(dx)/(dy) ne 0`, show that `(dy)/(dx) = (1)/((dx//dy))`.
Hence, (1) find `(d)/(dx) (tan^(-1)x)`
(2) If `y=sin^(-1)x, -1lexle1, -(pi)/(2)leyle(pi)/(2)`, then show that `(dy)/(dx)=(1)/(sqrt(1-x^(2)))` where `|x| lt 1`.

Text Solution

Verified by Experts

Let `deltax` and `deltay` be the corresponding increments in x and y respectively.
`therefore " as "deltaxrarr0, deltayrarr0 and "as "deltayrarr0, deltaxrarr0`
Now, `(deltay)/(deltax)xx(deltax)/(deltay)=1." ... "[because deltax ne0, deltay ne0]`
Taking limits as `deltax rarr 0`, we get,
`underset(deltaxrarr0)lim((deltay)/(deltax)xx(deltax)/(deltay))=1" "therefore underset(deltaxrarr0)lim(deltay)/(deltax)xxunderset(deltaxrarr0)lim(deltax)/(deltay)=1`
`therefore underset(deltaxrarr0)lim(deltay)/(deltax)xxunderset(deltayrarr0)lim(deltax)/(deltay)=1" ... "["as "deltaxrarr0, deltayrarr0]`
`therefore (dy)/(dx).(dx)/(dy)=1" "...[because(dy)/(dx) and (dx)/(dy)" both exist"]`
`therefore (dy)/(dx)=(1)/((dx//dy)),"as "(dx)/(dy)ne0`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 1 Solved Examples|4 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 2 Solved Examples|3 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

Find (dy)/(dx) if y=tan^(-1)((sqrt(1+x^(2)-1))/(x)), where x!=0

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y=e^(acos^(-1)x),-1lexle1 , show that : dy/dx=(-ae^(acos^(-1)x))/(sqrt(1-x^(2)))

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))