Home
Class 12
MATHS
If x and y are differentiable functions ...

If x and y are differentiable functions of t, then `(dy)/(dx)=(dy//dt)/(dx//dt)," if "(dx)/(dt)ne0`.

Text Solution

Verified by Experts

Let `deltax` and `deltay` be the increments in x and y respectively corresponding to the increment `deltat` in t.
Since x and y are differentiable functions of t,
`(dx)/(dt)=underset(deltatrarr0)lim(deltax)/(deltat) and (dy)/(dt)=underset(deltatrarr0)lim(deltay)/(deltat)" ...(1)"`
Also, as `deltatrarr0, deltaxrarr0" ...(2)"`
Now, `(deltay)/(deltax)=((deltay//deltat))/((deltax//deltat))" ..."[deltatne0]`
Taking limits as `deltatrarr0`, we get,
`underset(deltatrarr0)lim(deltay)/(deltax)=underset(deltatrarr0)lim((deltay//deltat))/((deltax//deltat))`
`underset(deltaxrarr0)lim(deltay)/(deltax)=(underset(deltatrarr0)lim(deltay//deltat))/(underset(deltatrarr0)lim(deltax//deltat))=((dy//dt))/((dx//dt))" ...[By (1) and (2)]"`
`because` the limits in R.H.S. exist
`therefore underset(deltaxrarr0)lim(deltay)/(deltax)` exists and is equal to `(dy)/(dx)`
`therefore (dy)/(dx)=(dy//dt)/(dx//dt)," if "(dx)/(dt)ne0`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 1 Solved Examples|4 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 2 Solved Examples|3 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If x=f(t), y=g(t) are differentiable functions of parameter 't' then prove that y is a differentiable function of 'x' and (dy)/(dx)=((dy)/(dt))/((dx)/(dt)),(dx)/(dt) ne 0 Hence find (dy)/(dx) if x=a cos t, y= a sin t.

If y = f(u) is a differentiable functions of u and u = g(x) is a differentiable functions of x such that the composite functions y = f[g(x) ] is a differentiable functions of x then (dy)/(dx) = (dy)/(du) . (du)/(dx) Hence find (dy)/(dx) if y = sin ^(2)x

If y=f(x) is a differentiable function x such that invrse function x=f^(-1) y exists, then prove that x is a differentiable function of y and (dx)/(dy)=(1)/((dy)/(dx)) where (dy)/(dx) ne0 Hence, find (d)/(dx)(tan^(-1)x) .

If y =f(u) is differentiable function of u, and u=g(x) is a differentiable function of x, then prove that y= f [g(x)] is a differentiable function of x and (dy)/(dx)=(dy)/(du)xx(du)/(dx) .

If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable functions of x and if dx//dt ne 0 then (dy)/(dx) =(dy)/((dt)/((dx)/(dt)) . Hence find dy/dx if x= 2sint and y=cos2t

The differential equation x(dy)/(dx)+(3)/((dy)/(dx))=y^(2)

If y is twice differentiable function of x, then the expression (1-x^(2)).(d^(2)y)/(dx^(2))-x(dy)/(dx)+y by means of the transformation x=sint in terms of t is (d^(2)y)/(dt^(2))+lambday . Thus lambda is….

Let the function x(t) and y(t) satisfy the differential equations (dy)/(dt)+ax=0,(dy)/(dt)+by=0. If x(0)=2,y(0)=1 and (x(1))/(y(1))=(3)/(2), then x(t)=y(t) for t=

Suppose y=f (x) is differentiable functions of x on an interval I and y is one - one, onto and (dy) / (dx) ne 0 on I . Also if f^(-1)(y) is differentiable on f(I) then prove that (dx)/(dy) =(1)/(dy//dx), dy/dx ne 0

Order and degree of the differential equation y(dy)/(dx)=(x)/((dy)/(dx) + ((dy)/(dx))^(3)) respectively are