`log_(x)a`.

A

`(-loga)/(a(logx)^(2))`

B

`(-logx)/(x(loga)^(2))`

C

`(loga)/(x(logx)^(2))`

D

`(-loga)/(x(logx)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `y=log_(x)a=(loga)/(logx)`
`therefore (dy)/(dx)=(d)/(dx)((loga)/(logx))`
`=(loga).(d)/(dx)(logx)^(-1)=(loga)(-1)(logx)^(-2).(d)/(dx)(logx)`
`=(-loga)/((logx)^(2))xx(1)/(x)=(-loga)/(x(logx)^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 6 Solved Examples (Differentiate the following w.r.t. x)|2 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 7 Solved Examples (Differentiate the following w.r.t. x)|2 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 1 Solved Examples|4 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

log_(x)4+log_(x)16+log_(x)64=12

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

Given x>1 and log_(x)(x^(x^(2)))+log_(x)(x^(-5x))=log_(x)((1)/(x^(6)))

If (log_(5)x)(log_(x)3x)(log_(3x)y)=log_(x)x^(3) then y equals