Home
Class 12
MATHS
y=log[(x+sqrt(x^(2)+a^(2)))/(sqrt(x^(2)+...

`y=log[(x+sqrt(x^(2)+a^(2)))/(sqrt(x^(2)+a^(2))-x)]`

Text Solution

AI Generated Solution

To solve the problem, we need to simplify the expression given in the question step by step. The expression is: \[ y = \log\left(\frac{x + \sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2} - x}\right) \] ### Step 1: Rationalizing the Denominator We will multiply the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{x^2 + a^2} + x\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=

Differentiate the following w.r.t. x : log((x+sqrt(x^(2)-a^(2)))/(x-sqrt(x^(2)-a^(2))))

y=log[(x+sqrt(x^(2)+25))/(sqrt(x^(2)+25)-x)], find (dy)/(dx)

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2)))

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

The portion of the tangent to the curve x=sqrt(a^(2)-y^(2))+(a)/(2)(log(a-sqrt(a^(2)-y^(2))))/(a+sqrt(a^(2)-y^(2))) intercepted between the curve and x -axis,is of legth.

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

y=x sqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2))), thenshowthat (dy)/(dx)=2sqrt(a^(2)+x^(2))

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2)))-:(sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c