Home
Class 12
MATHS
y=e^(3x).sin^(2)x.logx...

`y=e^(3x).sin^(2)x.logx`

Text Solution

AI Generated Solution

To find the derivative of the function \( y = e^{3x} \sin^2 x \log x \), we will use the product rule and the chain rule. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = e^{3x} \sin^2 x \log x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(3x) sin ^(2)x log x ,then (dy)/(dx)=

y=e^(sin x^(3))

y=e^(sin x^(3))

e^(x+2logx)

Differentiate wrt x : (3e^(x)sinx+a^(x)*logx)

Find (dy)/(dx),quad y=e^(3x)sin4x*2^(x)

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

e^(2x) sin 3x