Home
Class 12
MATHS
y = x^(sinx).(tanx)^(x)...

`y = x^(sinx).(tanx)^(x)`

Text Solution

AI Generated Solution

To differentiate the function \( y = x^{\sin x} \cdot (\tan x)^{x} \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the logarithm of both sides: \[ \ln y = \ln(x^{\sin x} \cdot (\tan x)^{x}) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

y=e^(sinx)+(tanx)^(x)

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

y=x^(sinx)+a^(sinx)

y=x^(tanx)

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

y=(sinx)^(tanx)+(cosx)^(secx)

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

lim_(x to 0) (sinx-tanx)/(x) equal to?

Differentiate x^(tanx)+(sinx)^(cosx) w.r.t. x.

The value of (2 sinx)/(sin 3x)+(tanx)/(tan3x) ____________