Home
Class 12
MATHS
x^((2)/(3))+y^((2)/(3))=10^((2)/(3)) fin...

`x^((2)/(3))+y^((2)/(3))=10^((2)/(3))` find `dy/dx`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the equation \(x^{\frac{2}{3}} + y^{\frac{2}{3}} = 10^{\frac{2}{3}}\), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate both sides with respect to \(x\) We start with the equation: \[ x^{\frac{2}{3}} + y^{\frac{2}{3}} = 10^{\frac{2}{3}} \] Differentiating both sides with respect to \(x\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^((2)/(3) ) +y^((2)/(3))=10^((2)/(3)) ,then (dy)/(dx)=

If x^((2)/(3))+y^((2)/(3))=a^((2)/(3)), then (dy)/(dx)=

y=-x^x.e^(2(x+3)) find dy/dx

y=(x-7)/((x-2)(x-3)) find dy/dx

If x^(2/3)+y^(2/3)=a^(2/3), find (dy)/(dx)

Find (dy)/(dx) in each of the following: x^((2)/(3))+y^((2)/(3))=a^((2)/(3))

Find (dy)/(dx) if x^((2)/(3))+y^((2)/(3))=a^((2)/(3))

y=(x-1)/((x-2)(x-3)) , find dy/dx

If y=(5x)/((1-x^(2))^((1)/(3)))+sin^(2)(2x+3) Find (dy)/(dx)

y=(x^4+4)(x^2-3) find dy/dx