Home
Class 12
MATHS
x sin y + y sin x = 0...

x sin y + y sin x = 0

Text Solution

Verified by Experts

x sin y + y sin x = 0
Differentiating w.r.t. x, we get,
`x.(d)/(dx)(siny)+siny.(d)/(dx)(x)+y.(d)/(dx)(sinx)+sinx.(dy)/(dx)=0`
`therefore x cos y.(dy)/(dx)+sinyxx1+ycosx+sinx.(dy)/(dx)=0`
`therefore (xcosy+sinx)(dy)/(dx)=-siny-ycosx`
`therefore (dy)/(dx)=-((siny+ycosx)/(xcosy+sinx))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x + sin y + sin z = 0 and cos x + cos y + cos z = 0 then prove that cot (x+y)/2 = cot z and cos (x-y)/2 = pm 1/2

Solution of differential equation (2x cos y + y ^ (2) cos x) dx (2y sin xx ^ (2) sin y) dx = 0 is (a) x ^ (2) cos y + y ^ (2) sin x = C (b) x cos yy sin x = C (c) x ^ (2) cos ^ (2) y + y ^ (2) sin ^ (2) x = C (d) x cos y + y sin x = C

If cos(x - y)= -1 , show that cos x + cos y = 0 and sin x + sin y = 0 .

If cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) =

cos x + cos y + cos alpha = 0 and sin x + sin y + sin alpha = 0 then cot ((x + y) / (2)) is

What ( sin x cos y + cos x sin y) (sin x cos y - cos x sin y) equal to ?

The solution of (dy) / (dx) + (y cos x + sin y + y) / (sin x + x cos y + x) = 0 is

0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, quad 0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, then x + y =

Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0