Home
Class 12
MATHS
x=acost,y=asint. find dy/dx...

`x=acost,y=asint`. find `dy/dx`

A

`tant`

B

`-tant`

C

`-cott`

D

`cott`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \cos t\) and \(y = a \sin t\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. Differentiate \(x = a \cos t\): \[ \frac{dx}{dt} = -a \sin t \] 2. Differentiate \(y = a \sin t\): \[ \frac{dy}{dt} = a \cos t \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we can find \(\frac{dy}{dx}\) by dividing \(\frac{dy}{dt}\) by \(\frac{dx}{dt}\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a \cos t}{-a \sin t} \] ### Step 3: Simplify the expression The \(a\) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = \frac{\cos t}{-\sin t} = -\cot t \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\cot t \] ---

To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \cos t\) and \(y = a \sin t\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. Differentiate \(x = a \cos t\): \[ \frac{dx}{dt} = -a \sin t \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^n . find dy/dx

y=a^(x+y) , find dy/dx

y=(-1/x)^x find dy/dx

y=a^x , find dy/dx

y=x^(1/x) find dy/dx

y=(1/x)^x find dy/dx

If y=x|x| , find dy/dx

If x+y=5 find dy/dx

If y=a^x+x^x , find dy/dx

If y=x.log x , find dy/dx