Home
Class 12
MATHS
y=((cosx)^(x))/(1+x-x^(2))...

`y=((cosx)^(x))/(1+x-x^(2))`

Text Solution

AI Generated Solution

To differentiate the function \( y = \frac{(\cos x)^x}{1 + x - x^2} \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides: \[ \ln y = \ln \left( \frac{(\cos x)^x}{1 + x - x^2} \right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

y=(x^(cosx))/(x^(2)+4x+5)

If y=(logx)^(cosx)+(x^(2)+1)/(x^(2)-1) , find (dy)/(dx).

Find dy/dx when : y=x^(sinx-cosx)+(x^(2)-1)/(x^(2)+1)

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

If y=(cos x)^((cosx)^((cos x )...oo)) then prove that dy/dx=(y^2 tan x)/(y log (cosx)-1).

(cosx)^(y)=(siny)^(x)

If y=((log)_(cosx)sinx)((log)_(sinx)cosx)+sin^(-1)(2x)/(1+x^2) , then (dy)/(dx) at x=pi/2 is equal to.......

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

"If "y=x^(cos)+(cosx)^(x)", prove that "(dy)/(dx)=x^(cosx).{(cosx)/(x)-(sinx)logx}+(cosx)^(x)[(log cos x)-x tan x].