Home
Class 12
MATHS
cot^(-1)((1)/(sqrt(x)))...

`cot^(-1)((1)/(sqrt(x)))`

Text Solution

AI Generated Solution

To find the differentiation of \( y = \cot^{-1}\left(\frac{1}{\sqrt{x}}\right) \), we will follow these steps: ### Step 1: Identify the function and its derivative The derivative of \( \cot^{-1}(u) \) is given by: \[ \frac{d}{du} \cot^{-1}(u) = -\frac{1}{1 + u^2} \] In our case, \( u = \frac{1}{\sqrt{x}} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (Differentiate)|4 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|12 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1) ( - (1)/(sqrt(3))) =x then the value of sin x is

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .

cot^(-1)((sqrt(1-x^(2)))/(x))

The solution set of equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)((sqrt(1-x^(2)))/(x))-sin^(-1)

Differentiate sin^(-1)sqrt(1-x^(2)) with respect to cot^(-1)((x)/(sqrt(1-x^(2)))), if ^(@)0

cot^(-1)(sqrt(1+x^2)-x)

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=

lim_(x rarr oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^(-1){((2x+1)/(x-1))^(x))) is equal to