Home
Class 12
MATHS
xy+ysec^(-1)x=1...

`xy+ysec^(-1)x=1`

Text Solution

AI Generated Solution

To differentiate the equation \( xy + y \sec^{-1} x = 1 \), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(xy + y \sec^{-1} x) = \frac{d}{dx}(1) \] Since the derivative of a constant is zero, we have: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (Differentiate)|4 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|12 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

Solution of the differential equation tan y.sec^(2) x dx + tan x. sec^(2)y dy = 0 is

What is the expression (x+y)^(-1) (x^(-1) +y^(-1)) (xy^(-1) +x^(-1)y)^(-1) equal to:

If xy=tan^(-1)xy+cot^(-1)xy " then "y_(1)=

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

If y=(sinh^(-1)x)/(sqrt(1+x^(2))) then (1+x^(2))y_(2)+3xy_(1)=

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

if y= (sin ^(-1)x)/(sqrt(1-x^2)) then prove that (1-x)^2) .d/dx=xy+1

If xy=sin^(-1)(xy)+cos^(-1)(xy)," then "(dy)/(dx)=

If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

If tan^(-1) x +tan^(-1) y = pi/4 , xy lt 1 , then prove that x+y+xy=1 .