Home
Class 12
MATHS
x+sqrt(xy)+y=1...

`x+sqrt(xy)+y=1`

Text Solution

Verified by Experts

`-((y+2sqrt(xy))/(x+2sqrt(xy)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the differential equation (y+x sqrt(xy)(x+y))dx+(y sqrt(xy)(x+y)-x)dy=0 is

Solution of the differential equation (y+x sqrt(xy)(x+y))dx+(y sqrt(xy)(x+y)-x)dy=0 is (A) (x^(2)+y^(2))/(2)+tan^(-1)sqrt((y)/(x))=lambda (B) (x^(2)+y^(2))/(2)+2tan^(-1)(sqrt((x)/(y)))=lambda (C) (x^(2)+y^(2))/(2)+2cot^(-1)sqrt((y)/(x))=lambda (D) (x^(2)+y^(2))/(2)+cot^(-1)sqrt((x)/(y))=lambda

If sqrt(x)+sqrt(y)=17 and sqrt(x)-sqrt(y)=1, then the value of is sqrt(xy)

If x,y in R satisfy the equation x^(2)+y^(2)-4x-2y+5=0, then the value of the expression ((sqrt(x)-sqrt(y))^(2)+4sqrt(xy))/((x+sqrt(xy))) is

y=(x^(2))/(2)+(1)/(2)x sqrt(x^(2)+1)+ln sqrt(x+sqrt(x^(2)+1)) prove that 2y=xy'+ln y'

Convert the following equations into simultaneous equations and solve: sqrt((x)/(y))=4,(1)/(x)+(1)/(y)=(1)/(xy)

If sqrt((x)/(y)) =(10)/(3) - sqrt((y)/(x)) and x-y=8 , then the value of xy is equal to