Home
Class 12
MATHS
sqrt(x^(3)+y^(3))=2axy...

`sqrt(x^(3)+y^(3))=2axy`

Text Solution

AI Generated Solution

To differentiate the equation \( \sqrt{x^3 + y^3} = 2axy \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \(x\). \[ \frac{d}{dx} \left( \sqrt{x^3 + y^3} \right) = \frac{d}{dx} \left( 2axy \right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (2)/(sqrt(x))+(3)/(sqrt(y))=2 ;(4)/(sqrt(x))+(3)/(sqrt(y))=2

If 2sqrt(2)x^(3)-3sqrt(3)y^(3)=(sqrt(2)x-sqrt3y)(Ax^(2)+by^(2)+Cxy) . Then the value of A^(2) + B^(2) - C^(2) is :

Show that: (x^((2)/(3))sqrt(y^(-2)))/(y^(2)sqrt(x^(-2)))times(y^(2)sqrt(x^(-2)))/(sqrt(x^((4)/(3))))=(1)/(y)

A ray of light along x+sqrt(3)y=sqrt(3) gets reflected upon reaching x-axis, the equation of the reflected rays is (1) sqrt(3)y=x-sqrt(3) (2) y=sqrt(3)x-sqrt(3) (3) sqrt(3)y=x-1 (4) y=x+sqrt(3)

The equation of the common tangent touching the circle (x-3)^(2)+y^(2)=9 and the parabola y^(2)=4x above the x -axis is sqrt(3)y=3x+1 (b) sqrt(3)y=-(x+3)sqrt(2)y=x+3(d)sqrt(3)y=-(3x-1)

The equation of the lines passing through the point (1,0) and at a distance (sqrt(3))/(2) from the origin is sqrt(3)+y-sqrt(3)=0x+sqrt(3)y-sqrt(3)=0sqrt(3)x-y-sqrt(3)=0x-sqrt(3)y-sqrt(3)=0

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

If 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) , then the value of sqrt((B^2+C^2-A)) is: यदि 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) है, तो sqrt((B^2+C^2-A)) का मान ज्ञात करें |