Home
Class 12
MATHS
If log(x+y)=log(xy)+a,"show that"(dy)/(d...

If `log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If y=(sqrt(x))^(sqrt(x)^(sqrt(x))...oo), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

If log((x)/(y))=x+y," then: "(dy)/(dx)=

If y=(log x)/(x), show that(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=(log x)/(x), show that (d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))