Home
Class 12
MATHS
If sec^(-1)((x+y)/(x-y))=a^(2), show tha...

If `sec^(-1)((x+y)/(x-y))=a^(2)`, show that `(dy)/(dx)=(y)/(x)`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)

If sec ((x+y)/( x-y))=a^(2) ,then (dy)/(dx) =

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

if e^(x+y)=xy, show that (dy)/(dx)=(y(1-x))/(x(y-1))

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)