Home
Class 12
MATHS
x=sinsqrt(t),y=e^(sqrt(t)) find dy/dx...

`x=sinsqrt(t),y=e^(sqrt(t))` find `dy/dx`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the given equations \(x = \sin(\sqrt{t})\) and \(y = e^{\sqrt{t}}\), we will use the chain rule. ### Step-by-step Solution: 1. **Differentiate \(x\) with respect to \(t\)**: \[ x = \sin(\sqrt{t}) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

y=t^(2)/(sqrt(t)) then find dy/dt

If y=sqrt(e^sqrt(x)) then find (dy)/(dx)

If x=int_(0)^(y)sqrt(1+t^(2))dt, find (dy)/(dx)

If x=t^(2),y=t^(3) find (dy)/(dx)

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

If x=(t+(1)/(t))^(a),y=a^(t+(1)/(t)), find (dy)/(dx)

If x=10(t-sin t),y=12(1-cos t), find (dy)/(dx)

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If y=sqrt(3t+1) and t=xsqrt3 then find (dy)/(dx)