Home
Class 12
MATHS
x=acos^(2)t,y=asin^(2)t find dy/dx...

`x=acos^(2)t,y=asin^(2)t` find `dy/dx`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the given equations \(x = a \cos^2 t\) and \(y = a \sin^2 t\), we will use the chain rule of differentiation. ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \cos^2 t \] To differentiate \(x\) with respect to \(t\), we apply the chain rule: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3) find (dy)/(dx)

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

If x=acos^(3)t,y=asin^(3)t,"show that "(dy)/(dx)=-((y)/(x))^((1)/(3))

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x=2cott+cos2t,y=2sint-sin2t,"find "(dy)/(dx)"at t"=(pi)/(4)

If x=bcos^(2)theta,y=asin^(2)theta," then "(dy)/(dx)=

x=sinsqrt(t),y=e^(sqrt(t)) find dy/dx

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)