Home
Class 12
MATHS
If x=log(1+t^(2)),y=t-tan^(-1)t, show t...

If `x=log(1+t^(2)),y=t-tan^(-1)t`, show that `(dy)/(dx)=sqrt(e^(x)-1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If x=e^(sin^(-1)t^(t)),y=tan^(-1)t, then (dy)/(dx)

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)