Home
Class 12
MATHS
If x = 2 cos^4(t+3), y = 3 sin^4(t+3), s...

If `x = 2 cos^4(t+3), y = 3 sin^4(t+3)`, show that `(dy)/(dx)` = - `sqrt((3y)/(2x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

"If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t," show that"(dy)/(dx)=cott.

If x=acos^(3)t,y=asin^(3)t,"show that "(dy)/(dx)=-((y)/(x))^((1)/(3))

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x=a cos ^(3) t,y =a sin ^(3)t,then " at" t = (pi)/(3) ,(dy)/(dx) =

If x=a cos^(3)t,y=b sin^(3)t then (dy)/(dx)=

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If x=a cos^(4)t, y=b sin^(4)t then (dy)/(dx) at t = (3 pi)/(4) is

If x=e^(sin3t),y=e^(cos3t),"show that "(dy)/(dx)=-(ylogx)/(xlogy)