Home
Class 12
MATHS
x=3cost-2cos^(3)t,y=3sint-2sin^(3)t...

`x=3cost-2cos^(3)t,y=3sint-2sin^(3)t`

Text Solution

Verified by Experts

`-(cosec^(2)t)/(3sint.cot2t)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the equation of normal at any point ton the curve x=3cos t-cos^(3)t and y=3sin t-sin^(3)t is 4(y cos^(3)t-x sin^(3)t)=3sin4t

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x=cos t(3-2cos^(2)t) and y=sin t(3-2s epsilon^(2)t) find the value of (dy)/(dx) at t=(pi)/(4)

x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

If x=2cost-cos2t & y=2sint-sin2t , find the value of (d^2y//dx^2) when t=(pi//2) .

If x= 2cost+cos 2t,y=2sin t-sin 2t ,then " at " t= ( pi)/(4) ,(dy)/(dx)