Home
Class 12
MATHS
If y=sqrt(x+1)-sqrt(x-1), prove that (x^...

If `y=sqrt(x+1)-sqrt(x-1)`, prove that `(x^2-1)(d^2y)/(dx^2)+x(dy)/(dx)-y/4=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x+1)-sqrt(x-1) ,prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=sqrt((1-x)/(1+x)), prove that (1-x^(2))(dy)/(dx)+y=0

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))