Home
Class 12
MATHS
If y=log((1)/(1+x)),then 1+(dy)/(dx)=......

If `y=log((1)/(1+x))`,then `1+(dy)/(dx)=.......`

A

`xe^(-y)`

B

`xe^(y)`

C

x

D

`-x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log\left(\frac{1}{1+x}\right) \) and find \( 1 + \frac{dy}{dx} \), we will follow these steps: ### Step 1: Differentiate \( y \) Given: \[ y = \log\left(\frac{1}{1+x}\right) \] We can rewrite this using the properties of logarithms: \[ y = \log(1) - \log(1+x) = 0 - \log(1+x) = -\log(1+x) \] Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = -\frac{d}{dx}(\log(1+x)) \] Using the derivative of the logarithm: \[ \frac{d}{dx}(\log(1+x)) = \frac{1}{1+x} \] Thus, \[ \frac{dy}{dx} = -\frac{1}{1+x} \] ### Step 2: Calculate \( 1 + \frac{dy}{dx} \) Now we need to find: \[ 1 + \frac{dy}{dx} = 1 - \frac{1}{1+x} \] ### Step 3: Simplify the expression To simplify: \[ 1 - \frac{1}{1+x} = \frac{(1+x) - 1}{1+x} = \frac{x}{1+x} \] ### Final Answer Thus, the final result is: \[ 1 + \frac{dy}{dx} = \frac{x}{1+x} \]

To solve the problem \( y = \log\left(\frac{1}{1+x}\right) \) and find \( 1 + \frac{dy}{dx} \), we will follow these steps: ### Step 1: Differentiate \( y \) Given: \[ y = \log\left(\frac{1}{1+x}\right) \] We can rewrite this using the properties of logarithms: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice (Differentiate)|4 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

y=log(x/(1+bx)) then (dy)/(dx)

If y=log((1)/(x)) then value of (dy)/(dx) at x=2 is

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))