Home
Class 12
MATHS
If the line y=4x-5 touches the curve y^(...

If the line `y=4x-5` touches the curve `y^(2)=ax^(3)+b` at the point (2, 3), show that `7a+2b=0`.

Text Solution

Verified by Experts

`y^(2)=ax^(3)+b`
Differentiating both sides w.r.t. x, we get,
`2y(dy)/(dx)=axx3x^(2)+0`
`:. (dy)/(dx)=(3ax^(2))/(2y)`
`:.((dy)/(dx))_("at "(2, 3))=(3a(2)^(2))/(2(3))=2a`= slope of the tangent at (2, 3)
Since the line `y=4x-5` touches the curve at the point (2, 3).
slope of the tangent at (2, 3) is 4.
`:.2a=4" ":.a=2`
Since (2, 3) lies on the curve `y^(2)=ax^(3)+b`,
`(3)^(2)=a(2)^(3)+b" ":.9=8a+b`
`:.9=8(2)+b" "...[because a=2]`
`:. b= -7`
`:.7a+2b=7(2)+2(-7)=0`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|61 Videos
  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS ( AREA )

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (3 OR 4 MARKS )|5 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If the line y=4x-5 touches the curve y^(2)=ax^(3)+b at the point (2,3), then 7a+2b=0

If the line y=4x -5 touches the curve y^(2) =ax^(3) +b at the point (2,3) then a+b is

If the line y=4x-5 touches the curve y^(2)=ax^(3)+b at the point (2,3) , then : (a, b)-=

If the line y= 4x-5 toches to the curve y^(2) = ax^(3) +b at the point (2,3) then 7a +2b=

If the line x+y=0 touches the curve 2y^(2)=ax^(2)+b at (1,-1), then

If the line x+y=0 touches the curve y=x^(2)+bx+c at the point x=-2 , then : (b,c)-=

If the line x+y=0 touches the curve 2y^(2)=ax^(2)+b at (1, -1), find a and b.

If the tangent to the curve y^(2)=ax^(2)+b at the point (2,3) is y=4x-5, then (a,b)=

If the line y=4x+2 touches the curve y=a+bx+3x^(2) at the point where it crosses the Y-axes , then : (a,b)-=