Home
Class 12
MATHS
Find the approximate values of : cos(8...

Find the approximate values of :
`cos(89^(@)30)," given "1^(@)=0.0175^( c )`.

Text Solution

Verified by Experts

Let `f(x)=cos x`
`:.f'(x)=("d")/("dx")(cos x)=-sin x`
Take `a=90^(@)=(pi)/(2)` and
`h=-30=(-(1)/(2))^(@)=-((1)/(2)xx0.0175)^(c)=-0.00875^(c)`
Then `f(a)=f((pi)/(2))=cos""(pi)/(2)=0`
`f'(a)=f'((pi)/(2))=-sin""(pi)/(2)=-1`
The formula for approximation is
`f(a+h)=f(a)+h.f'(a)`
`:.cos(89^(@)30)=f(89^(@)30)=f((pi)/(2)-0.00875)`
`=f((pi)/(2))-0.00875.f'((pi)/(2))`
`=0-0.00875(-1)=0.00875`
`:. cos (89^(@)30)=0.00875`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|61 Videos
  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS ( AREA )

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (3 OR 4 MARKS )|5 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find the approximate values of : cos(60^(@)30')," given "1^(@)=0.0175^( c )" and "sin60^(@)=0.8660 .

Find the approximate values of : tan(44^(@))," given "1^(@)=0.0175^( c ) .

Find the approximate value of cos(29^(@)30') given 1^(@)=0.0175^(c) and cos30^(@)=0.8660

Find the approximate values of : cot^(-1)(1.001)

The approximate value of tan (45^(@) 10')," if "1^(@)=0.0175^(@) is

Find the approximate value of 25^(1//3)

The approximate value of sin (60^(@) 45')," if "1^(@)=0.0175^(@) is

Find the approximate value of (1.999)^(6)

Find the approximate value of sin(61^(@)) given that 1^(@)=0.0174^(c) sqrt(3)=1.732

Find the approximate values of : tan^(-1)(1.001) .