Home
Class 12
MATHS
Find the approximate value of log10(101...

Find the approximate value of `log_10(1016)` given `log_10 e =0.4343`

Text Solution

Verified by Experts

Let `f(x)=log_(10)x=(log_(e)x)/(log_(e)10)`
`=(log_(10)e)(logx)=(0.4343)logx`
`:.f'(x)=(0.4343).("d")/("dx")(logx)=(0.4343)/(x)`
Take `a=1000" and "h=16`. Then
`f(a)=f(1000)=log_(10)1000=log_(10)10^(3)=3`
`f'(a)=f'(1000)=(0.4343)/(1000)`
The formula for approximation is
`f(a+h)=f(a)+hf'(a)`
`:.log_(10)1016=f(1016)=f(1000+16)`
`=f(1000)+16.f'(1000)`
`=3+16xx(0.4343)/(1000)`
`=3+0.0069488=3.006949`
`:. log_(10)1016=3.006949`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|61 Videos
  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS ( AREA )

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (3 OR 4 MARKS )|5 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find the approximate value of log_(e)(101) given log_(e)10=2*3026

Using differentials, find the approximate value of log_(10)10.1 when log_(10)e=0.4343 .

Find the approximate value of log_(e)(9*01) given log_(e)3=1*0986

Find the approximate values of : log_(10)(1002)," given that "log_(10)e=0.4343 .

Find the value of log_(10)(10.1) given that log_(10) e=0.4343 .

Find the approximate value of (log)_(10)1005 , given that (log)_(10)e=0. 4343

Use differentials to find the approximate value of log_ _(e)(4.01), having given that log_(e)4=1.3863

Using differentials, find the approximate value of (log)_(10)10. 1 , it being given that (log)_(10)e=0. 4343 .

Using differentials, find the approximate value of (log)_e 10.02 , it being given that (log)_e 10=2. 3026 .