Home
Class 12
MATHS
Examine the function f(x)=x^(3)-9x^(2)+2...

Examine the function `f(x)=x^(3)-9x^(2)+24x` for maxima and minima.

Text Solution

AI Generated Solution

To examine the function \( f(x) = x^3 - 9x^2 + 24x \) for maxima and minima, we will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) To find the critical points, we need to differentiate the function: \[ f'(x) = \frac{d}{dx}(x^3 - 9x^2 + 24x) = 3x^2 - 18x + 24 \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|61 Videos
  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS ( AREA )

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (3 OR 4 MARKS )|5 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)-9x^(2)+24x, then f

If f(x)=x^(3)-9x^(2)+24x, then f

Show that the function f(x)=4x^(3)-18x^(2)+27x-7 has neither maxima nor minima.

Show that the function f(x)=4x^(3)-18x^(2)+27x-7 has neither maxima nor minima.

Show that the function x^(3)- 3x^(2)+3x+1 has neither a maxima nor a minima.

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

Verify Rolle's theorem for the function f(x) = x^(3) - 9x^(2) + 26x -24 in the interval [2.4]

If the function f(x)=(a+3)x^(3)+(a-3)x^(2)+4(a-4)x+5 has maxima at some x in R^(-) and a minima at some x in R^(+), find the possible values of a.

Maximum value of f(x)=x^(3)-9x^(2)+24x-15 is