Home
Class 12
MATHS
Show that f(x)=(log x)/(x), x ne 0 is ma...

Show that `f(x)=(log x)/(x), x ne 0` is maximum at `x = e`.

Text Solution

Verified by Experts

`f(x)=(log x)/(x)`
`:.f'(x)=("d")/("dx")((logx)/(x))`
`=(x("d")/("dx")(logx)-logx("d")/("dx")(x))/(x^(2))`
`=(x((1)/(x))-(logx)(1))/(x^(2))=(1-logx)/(x^(2))" and"`
`f''(x)=("d")/("dx")((1-logx)/(x^(2)))`
`=(x^(2)("d")/("dx")(1-logx)-(1-logx)("d")/("dx")(x^(2)))/(x^(4))`
`=(x^(2)(0-(1)/(x))-(1-logx)xx2x)/(x^(4))`
`=(-x-2x+2xlogx)/(x^(4))=(x(2 logx-3))/(x^(4))`
`:.f^(n)(x)=(2 log x-3)/(x^(3))`
Now `f'(x)=0`, if `(1-log x)/(x^(2))=0`
i.e. if `1-logx=0`, i.e. if `logx=1=log e`
i.e. if x = e
and `f^(n)(e)=(2loge-3)/(e^(3))=(-1)/(e^(3))lt 0" "...[because log e=1]`
`:.` by the second derivative test, f(x) is maximum at x = e.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|61 Videos
  • APPLICATIONS OF DERIVATIVES

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|12 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS ( AREA )

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE (3 OR 4 MARKS )|5 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Show that the function given by f(x)=(log x)/(x) has maximum at x=e

Show that (log x)/(x) has a maximum value at x=e

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

The maximum value of f(x) =(log x)/(x) (x ne 0, x ne 1) is

The maximum of f(x)=(log x)/(x^(2))(x>0) occurs at x=

If f(x) =(e^(x^(2))-cos x)/(x^(2)) , for x ne 0 is continous at x=0 , then value of f(0) is

The maximum value of f(x)=(logx)/(x)(x ne 0, x ne1) is