Home
Class 12
MATHS
int(a)^(b)f(x)dx=int(a)^(b)f(a+b-x)dx. H...

`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.` Hence evaluate : `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.`

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the integral \[ I = \int_{a}^{b} \frac{f(x)}{f(x) + f(a+b-x)} \, dx. \] Given the property of integrals, we know that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

int_(a)^(b)f(x)dx=phi(b)-phi(a)

int_(a + c)^(b+c) f(x)dx=

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

Which of the following is incorrect? int_(a+c)^(b+c)f(x)dx=int_(a)^(b)f(x+c)dxint_(a+c)^(bc)f(x)dx=c int_(a)^(b)f(cx)dxint_(-ac)^(a)f(x)dx=(1)/(2)int_(-a)^(a)(f(x)+f(-x)dx None of these

Prove that int_(0)^(a) f(x) dx= int_(0)^(a) f(a-x)dx . Hence find int_(0)^((pi)/(2)) sin^(2) xdx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a