Home
Class 12
MATHS
Property 6: If f(x) is a continuous func...

Property 6: If f(x) is a continuous function defined on `[0; 2a]` then ` int_0 ^2a = int_0 ^a f(x) dx + int_0 ^a f(2a - x) dx`

Text Solution

Verified by Experts

We shall use the following results :
`int_(a)^(b)f(x)dx=int_(a)^(b)f(t)dt" …(1)"`
`int_(a)^(b) intf(x) dx=-int_(b)^(a)f(x)dx" …(2)"`
If c is between a and b, then
`int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx" ...(3)"`
Since a lies between 0 and 2a, by (3), we have,
`I=int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(a)^(2a)f(x)dI_(1)+I_(2)" ...(Say)"`
In `I_(2),` put `x=2a-t`, then `dx=-dt`
When `x=a, 2a-t=a" "therefore" "t=a and" when "x=2a, 2a-t = 2a " "therefore" "t=0`
`therefore int_(a)^(2a)f(x) dx=int_(a)^(0)f(2a-t)(-dt)=-int_(a)^(0)f(2a-t)dt`
`=int_(0)^(a)f(2a-t)dt" ...[By (2)]"`
`=int_(0)^(a)f(2a-x)dx" ...[By (1)]"`
`therefore" "int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx.`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

Property 10: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=2int_(0)^(a)f(x)dx if f(2a-x)=f(x) and 0 if f(2a-x)=-f(x)

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

int_0^a f(a-x) dx=

Property 9: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=0 if f(x) is odd and 2int_(0)^(a)f(x)dx if f(x) is even

Property 8: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=int_(0)^(a){f(x)+f(-x)}dx

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

int _(0) ^(2a) f (x) dx = int _(0) ^(a) f (x) dx + int _(0)^(a) f (2a -x ) dx

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=