Home
Class 12
MATHS
int(-a)^(a)f(x)dx= 2int(0)^(a)f(x)dx, if...

`int_(-a)^(a)f(x)dx= 2int_(0)^(a)f(x)dx,` if f is an even function
0, if f is an odd function.

Text Solution

AI Generated Solution

To prove the statement regarding the definite integral of the function \( f(x) \) over the interval \([-a, a]\), we will consider two cases: when \( f(x) \) is an even function and when \( f(x) \) is an odd function. ### Step-by-Step Solution **Step 1: Understanding the Definitions** - A function \( f(x) \) is called **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is called **odd** if \( f(-x) = -f(x) \) for all \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

Prove that : int_(-a)^(a)f(x)dx =2 int_(a)^(0) f(x)dx, if f(x) is even funtion =0 , if f(x) is off fuction.

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

int_(0)^(2 pi)(x)/(1+tan^(24)x)dx,n>0( i) pi^(2)( ii) ((pi)/(2))^(2) (iii) int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx can be used to evaluate it (iv) Integrand is odd function

STATEMENT 1:int_(a)^(x)f(t)dt is an even function if f(x) is an odd function.STATEMENT 2:int_(a)^(x)f(t)dx is an odd function if f(x) is an even function.