Home
Class 12
MATHS
Form the differential equations by elimn...

Form the differential equations by elimniating the arbitary constants from the following equations :
(1) ` y =c^(2)+c/x` (2) ` x^(3) +y^(3) = 4ax` (3) ` y = Ae^(5x) + Be^(-5x) `
(4) ` y = A cos alpha x + B sin alpha x`

Text Solution

Verified by Experts

(1) ` y = c^(2) + c/x`
differentiating w.r.t x, we get
`(dy)/(dx) = d/(dx) (c^(2) + c/x) = 0 + c( - 1/x^(2))`
` (dy)/(dx) = - c/x^(2)`
` c= x^(2) (dy)/(dx)`
Solsitiuting the value of c in (1) , we get
` y = [ -x^(2) (dy)/(dx)]^(2) + 1/x (-x^(2)(dy)/(dx))`
` x^(4) ((dy)/(dx))^(2) -x(dy)/(dx) -y =0`
This is the required D.E.
(2) The given equation is
` x^(3) +Y^(2) =4ax`
Differentiating w.r.t x, we get
` 3x^(2) '+3y^(2) (dy)/(dx) = 4a`
Subsitituting the value of 4a in (1), we get
`x^(3) +y^(2) = (3x^(2) + 3y^(2) (dy)/(dx))x`
`x^(3) +y^(3) =3x^(3) +3xy^(2) (dy)/(dx)`
`2x^(3) -y^(3) +3xy^(2) (dy)/(dx) =0`
This is the required D.E.
(3) ` y= Ae^(5x) + Be^(-5x)`
Differentiating twice w.r.t. x, we get
`(dy)/(dx) = Ae^(5x) xx 5 + Be^(-5x) xx (-5)`
`(dy)/(dx) = 5Ae^(5x) -5Be^(-5x)`
` and (d^(2)y)/(dx^(2)) =5Ae^(5x) xx 5 - 5Be^(-5x) xx (-5)`
` = 25 Ae^(5x) + 25Be^(-5x) = 25(Ae^(5x) + Be^(-5x))`
= 25 y
` (d^(2)y)/(dx^(2)) - 25y=0`
This is the required D.E.
(4) ` y = A cos alpha x + B sin alphax`
Differentiating twice w.r.t. x, we get
` (dy)/(dx)=A (- sin alphax) xx alpha + B cos alpha x xx alpha `
`(dy)/(dx) =- alpha A sin alphax + alpha B cos alpha x`
`and (d^(2)y)/(dx^(2)) =- alpha A cos alphax xx alpha + alpha B( - sin alphax)xx alpha`
`(d^(2)y)/(dx^(2)) =- alpha^(2) A cos alpha x -alpha^(2) B sin alphax`
`= - alpha^(2) (A cos alphax + B sin alphax) = - alpha^(2) y `
`(d^(2)y)/(dx^(2)) alpha^(2) y=0`
The is the reqired D.E.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

Form the differential equations by eliminating the arbitrary constants from the following equations : 1. (1) xy = Ae^(x) + Be^(-x) + x^(2) (2) y= e^(-x) (A cos 2x + B sin 2x)

Form the differential equation, if y^(2)=4a(x+a), where a,b are arbitary constants.

The differential equation for y=a sin (5x+c) is

Form the differential equation by eliminating A,B and C from y=Ae^(2x)+Be^(3x)+Ce^(4x)

Form the differential equation by eliminating A,B and c from y=Ae^(2x)+Be^(3x)+Ce^(-2x) is

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

The differential equation for y=Ae^(3x)+Be^(2x) is

Find five different solutions of each of the following equations: (a) 2x-3y=6 (b) (2x)/5+(3y)/10=3 (c) 3y=4x

solve for x,y, the following equation (2)/(x)+(3)/(y)=13;(5)/(x)-(4)/(y)=-2

Form the differential equation of family of curves y = ae^(2x) + be^(3x) , where a, b are arbitrary constants.