Home
Class 12
MATHS
Verify the solution problems: Show that ...

Verify the solution problems: Show that `y = e^-x + ax +b` is solution of the differential equation `e^x d^y / dx^2 = 1`

Text Solution

Verified by Experts

` y = e^(-x) +Ax + B`
` (dy)/(dx) =e^(-x) (-1) + A(1) +0 = -e^(-x) + A `
` and (d^(2)y)/(dx^(2)) = -e^(-x) (-1) + 0 =e^(-x)`
` (d^(2)y)/(dx^(2)) = 1/e^(x)`
` (d^(2)y)/(dx^(2)) = 1/e^(x)`
` e^(x) ((d^(2)y)/(dx^(2))) =1`
This shows that ` y = e^(-x) + Ax + B` is a solution of ` e^(x) ((d^(2)y)/(dx^(2)))=1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for practice (2)|18 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation e^(x)dx+e^(y)dy=0 is

The solution of the differential equation e^(x)dx+e^(y)dy=0 is

The solution of the differential equation (dy)/(dx)-e^(x-y)=1 is

Show that y=c*e^(-x) is a solution of differential equation (dy)/(dx)+y=0 .

The solution of the differential equation (dy)/(dx) = e^(x+y) is

The solution of the differential equation (dy)/(dx)+y=e^(-x) is

The solution of the differential equation (d^(2)y)/(dx^(2))=e^(-2x) , is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

Solution of the differential equation (x-y)(1-(dy)/(dx))=e^(x) is

The solution of the differential equation (dy)/(dx)+1=e^(x+y) , is